The effect of climatic variability on population dynamics of the Cucuteni-Tripolye cultural complex and the rise of the Western Tripolye giant-settlements

Thomas K. Harper

This paper presents the results of a multi-scalar analysis of 1800 years of Cucuteni-Tripolye population dynamics, with particular emphasis on the rapid Western Tripolye migrations beginning c. 4150 B.C.E. that led to the development of the giant-settlement phenomenon in Central Ukraine. In addition to macro-scale population modeling, statistical analysis is performed to demonstrate a significant correlation between giant-settlement formation in the Southern Bug-Dnieper interfluve and proxies for a concurrent period of sudden, global climate change. Through the use of high-resolution climate data, this research compliments and expands upon existing theories of climate effects on Cucuteni-Tripolye population dynamics and settlement agglomeration.*
Introduction

The Eneolithic Cucuteni-Tripolye cultural complex of Romania, Moldova, and Ukraine poses many questions for the study of ancient population dynamics. Recent international attention has primarily been concerned with the Western Tripolye giant-settlement phenomenon, where at least eleven settlements of 100-335 ha in size were constructed in the land between the Southern Bug and Dnieper rivers (the Southern Bug-Dniper interfluve; SBDI) and each briefly inhabited between c. 4150 and 3500 B.C.E. (see figure 1 for geographic reference). Since these are the largest known settlements of prehistoric Europe, the processes of their formation figure prominently into the inevitable archaeological debates surrounding their purpose and degree of sociopolitical complexity. On the basis of ceramic typology, it is generally accepted that several rapid waves of migration brought a large portion of the Cucuteni-Tripolye population into the forest-steppe ecoregion of Ukraine at this time, predominately from the Cucuteni-Tripolye “homeland” in the Siret, Prut, and Dniester river valleys. While initial development of the Cucuteni-Tripolye culture (phases Precucuteni/Tripolye A through Cucuteni A/Tripolye B; c. 4800-4300/4200 B.C.E.) was marked by increasing growth in the West, the forest-steppe region of Ukraine was comparatively unpopulated. I.V. Manzura describes the colonization of the East as being akin to a “steppe valve” suddenly being opened. Probable causal factors behind this opening have been highly speculative.

![Image: Geographic reference and delineation of study areas, including major river systems.](image-url)
Previous Scholarship

Most accounts of the territorial and cultural development of the Cucuteni-Tripolye culture are descriptive in nature, featuring qualitative summaries of the proliferation of material culture set against varying periodizations. More analytical, demographic approaches can be found in the writings of S.N. Bibikov, V.M. Masson, N.M. Shmagliy, and A.G. Kolesnikov, and M. Yu. Videiko. Even so, in many cases the demographic work of these authors was abbreviated, limited to certain regions, and usually undertaken as a component of some other analysis (e.g. paleoeconomic calculations). The most dedicated examination of macro-scale Cucuteni-Tripolye demography is the 1993 study of V.A. Kruts. The demographic portion of this present research may be seen as a logical development from the methods and intent of Kruts, which, while they are still relevant, may benefit greatly from recent developments in the understanding of the Cucuteni-Tripolye complex.

In particular, the work of A.V. Diachenko has brought insight into migratory events related to the advent of the giant-settlements belonging to the Vladimirskaya, Nebelvskaya, and Tomashovskaya local groups in the Southern Bug-Dnieper interfluve. Following extensive work in chronology – both relative and absolute – archaeological understanding of this region during phases Tripolye BII to CI-II (c. 4200-3400 B.C.E.) is better than any other area of the Cucuteni-Tripolye complex. On the basis of this improved local chronology, Diachenko has produced a systematization of settlement data from which several models of development and interaction have been derived.

From the perspective of this study, Diachenko’s most notable work has been in proposing a correlation between Cucuteni-Tripolye settlement events and eustatic fluctuations of the Black Sea, a paleoclimatic proxy that is related to regional temperature and aridity. According to these data, where sea level regressions signify cool and dry periods, and transgressions warm and wet periods, the middle-to-late Tripolye migrations occurred during periods of cool, dry climate. Essentially, a reduction in regional carrying capacity due to climatically-induced constraints provided an impetus for emigration from the western regions to the forest-steppe.

Application of these sea level trends entails some controversy. Several paleoclimate schemes based on these data (of which there are dozens) were recently criticized by E. Fouache and his colleagues as being highly variable and confounded by active geology throughout the Black Sea basin. In particular, the authors targeted the hydrodynamically-improbable suggestion that the level of the Black Sea was, for extended periods, lower than observed global trends. However, reservations toward these data aside, Diachenko’s suggestion of a climatic determinant for migrations is an improvement over older theories of Cucuteni-Tripolye population dynamics. These typically assume a situation of “explosive” population growth triggering resource shortfalls, which is a problematic assumption. According to F.A. Hassan, the concept of population “pressure” in archaeology is “vague and rather ill-defined” and usually of little substance in reference to empirical observations. Demographic growth rates vary widely and rarely follow the curve of maximum biotic potential, instead being subject to environmental and technological constraints which impose a local carrying capacity. Carrying capacities may be seen as a “hard” limit to population growth, but there are further “soft,” human-defined, limits that pertain to resource optimization and other social considerations. In preindustrial societies, the optimal carrying capacity of a given territory is often only a portion of its theoretical maximum, generally providing some buffer for normalization in the event of resource shortfalls. In any case, it is possible to adopt the underlying hypothesis of the current literature – that migration was undertaken...
due to some form of economic crisis – while rejecting the proposed demographic causation. I will instead turn to issues of climate.

Migration and Climate

Based on the suggestion by B. Weninger and his colleagues that the Holocene Rapid Climate Change (RCC) phenomenon may explain diachronic variation in several archaeological contexts, we recently made the qualitative observation that the Tripolye BII period settlement of the SBDI was temporally aligned with the beginning of an RCC interval with a period of c. 6000-5000 cal B.P. There is also similar agreement with Bond Event 4, c. 5900 cal B.P. There are many proxies (some of them discussed here) which indicate a period of both terrestrial and oceanic climate fluctuation at this time, one among many in a roughly millennial global cycle of variable temperature and aridity. While RCC conditions have global ramifications, in this regional context I am primarily concerned with the mechanics of the Pontic “steppe corridor” and the influence of the Siberian High pressure system, one of the chief indicators of RCC conditions up to the super-regional scale (Fig. 2). The chief objective of this research is to assess whether any correlation can be found between the RCC/Bond Event proxies and Cucuteni-Tripolye population dynamics. To this end, settlement data from the Southern Bug-Dnieper interfluve were tested against a

Figure 2: Ecoregions along the Black Sea littoral (data from Olson et al. 2001). Winter cold air emanating from the Siberian High pressure traverses the “corridor” of the Pontic steppe. 1 – nucleus of early settlement (Precucuteni to Cucuteni A/Tripolye BI); 2 – main area of middle to late (Tripolye BII, CI, and CI-II) settlement in the SBDI, including giant-settlements.
collected body of climate data (defined below) and compared with a macro-scale model of population development.

Model Construction and Analysis Methodology

Chronology – Macro-scale Model

In constructing the macro-scale model, I utilize previous work on the calibration and analysis of available 14C data, which generalizes the Cucuteni-Tripolye periodization into discrete temporal units. The construction of this periodization involved an initial radiocarbon data set of $n=244$, reduced to a core data set of $n=104$ due to considerations of data validity. In the results, chronological phases consisted of near-parabolic distributions of 14C envelopes, with the notable exception of phase 3, for which 14C dating is problematic. If cultural periods are conceived as being described by overlapping normal distributions, it is possible to describe their duration according to degrees of statistical confidence, and estimate the location of break-points to form a rough, abstracted periodization for model application. This periodization is described in Table 1.

<table>
<thead>
<tr>
<th>Phase</th>
<th>Date range (B.C.E.)</th>
<th>Corresponding cultural periods</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>c. 4800 - 4550</td>
<td>Romania</td>
</tr>
<tr>
<td>2</td>
<td>c. 4550 - 4200</td>
<td>Ukraine/Moldova</td>
</tr>
<tr>
<td>3</td>
<td>c. 4200 - 3900</td>
<td>Tripolye A</td>
</tr>
<tr>
<td>4</td>
<td>c. 3900 - 3600</td>
<td>Tripolye BI-II, Tripolye BII</td>
</tr>
<tr>
<td>5</td>
<td>c. 3600 - 3000</td>
<td>Tripolye CI-II, Tripolye CII</td>
</tr>
</tbody>
</table>

Table 1: Simplified Cucuteni-Tripolye periodization for macro-scale model application (after Weninger and Harper, forthcoming). Note that this deviates in some cases from regional schemes of relative chronology due to limitations of settlement and 14C data.

These results compare favorably to several other recent periodizations, but it must be stressed that the phases outlined here neglect much regional variability. Problems exist with the distribution and accuracy of 14C data, especially during short or transitional periods (Cucuteni A/B, Tripolye BI-II, Tripolye BII). The conflation of Tripolye BI-II and BII settlement data seen in Manzura’s research (and also utilized in this study) is currently a necessary measure. It is a good example of problems that exist in understanding relative chronology between regions, and the compromises that must be made in attempting a meaningful categorization of data. According to numerous studies, Tripolye CI materials are a continuous development of BII. Tripolye BII and CI are, in fact, both synchronous with Cucuteni B, which should have a longer duration than shown here. In the SBDI in particular, settlements of periods BII and CI are partially contemporaneous for approximately a century, estimated here as c. 3950-3850 B.C.E. On the other hand, the difference in material culture and the existence of temporal discontinuities between settlement events belonging to phases BI-II and BII makes their combination inappropriate.

Chronology – SBDI Settlements

While the absolute chronology may be used to statistically define cultural periods in a broad sense, it is more difficult on a local level. Very few 14C dates exist for the Southern Bug-Dnieper interfluve and the quality of most of them is suspect. As an example, examination of the four Kiev dates (Ki-6922, Ki-6923, Ki-6924, Ki-6925) from the Ol’khovets settlement belonging to the Kosenovskaya local group (Tripolye CI-II) give a combined 68% range of 2870-2630 cal B.C.E., which is well into the Early Bronze Age. The comparison between older dates (mostly from the 1970s-1990s)
for the Tomashovskaya giant-settlements of Tal’yanki and Maidanetskoe with the new Oxford AMS dates from Tal’yanki further reveals the scope of the problem (refer to Fig. 3). It was decided that these newer dates alone should be used to position the relative chronology, with the Tomashovskaya local group settlement phase 3 stage 2 set to c. 3850-3800 B.C.E.

Settlement Data

Settlement data were collected into three separate sets. The first is a macro-scale data set (n=2595) of site coordinates georeferenced from the research of Manzura. While it is accurate enough to describe the general locations and clustering of known Cucuteni-Tripolye sites, it lacks any metadata beyond temporal categorization. The second data set consists of SBDI settlement data (n=68; Tripolye BII to CI-II) adapted from the work of Diachenko. This set describes the absolute positions, sizes, and in most cases the microchronological relative dating of sites. The final data set is the author’s general collection of Cucuteni-Tripolye settlement and 14C data (n=210), derived from a variety of sources.

The second and third sets, owing to their detailed metadata, were used to determine trends in the spatial and temporal variation of settlement sizes, which were then applied to the macro-scale model. The disparity between my collected settlement data from the SBDI (n=68) and all other regions (n=29) is but one example of the comparative systematization of Cucuteni-Tripolye archaeology in this region. Calculations for settlement size in different spatio-temporal contexts are described in Table 2. The lower median values are representative of the vast majority of settlements, but the contribution of large settlements reflected by the mean values must also be considered. In order to overcome dubious values caused by the small sample size, a weighted mean was calculated based on four model scenarios:

Figure 3: Problems in the relationship of 14C dates to relative chronology in the SBDI. The darkened regions of the radiocarbon envelopes indicate the interquartile range (50% confidence interval). This study relies on recent AMS dates from Tal’yanki to situate the relative sequence of settlements.
where \(p \) is total population at a given time reference, \(a \) is the area of settlement \(i \) in a series of \(n \) settlements, \(t \) is the number of settlement generations, \(b \) is the number of houses per hectare (constant; 9.66), \(s \) is the coefficient of housing synchronicity (constant; 0.786), and \(d \) is the household composition (constant; 5.5).

Demographic Interpolation and Comparison with Climate Data

A key limitation of this macro-scale model is its poor temporal resolution. All settlement and climate data were temporally justified in a time series spanning 4800 to 3000 B.C.E. (ten-year increments). This necessitated linear interpolation of demographic data over intervals of centuries. Owing to this, it was decided that statistical testing of the model environment would likely yield spurious correlations. Therefore the empirical SBDI data constitutes the testing environment, while the macro-scale model is descriptive, used to compare our results against the demographic context of the Cucuteni-Tripolye complex as a whole.

Climatic proxies were derived from the climate database provided with the University of Cologne Radiocarbon Calibration Program software package (CalPal). The following data sets were used: Holocene Non-Sea-Salt K+ ion series from GISP2 with 200-year moving Gaussian filter, Holocene Sea-Salt Na+ ion series from GISP2 with 200-year moving Gaussian filter, North Atlantic Holocene Drift Ice Proxy (Stack), Global Sea Levels, SL21 S. elongatus prevalence, LC21 Aegean warm-water foraminifera species prevalence,

Table 2: Calculated spatial and temporal variation in settlement sizes.

\[
\begin{array}{cccccc}
\text{Phase} & \text{Southern Bug-Dnieper interfluve} & & & & \\
& \text{mean} & \text{median} & \text{weighted mean} & n & & \text{All other regions} & & & & \\
& & & & & & \text{mean} & \text{median} & \text{weighted mean} & n \\
1 & n.d. & n.d. & n.d. & 0 & 2.1 & 1 & 2.5 & 5 \\
2 & n.d. & n.d. & n.d. & 0 & 5.8 & 3.8 & 4.1 & 8 \\
3 & 46.4 & 39.3 & 37.4 & 15 & 5.4 & 4.5 & 4.2 & 11 \\
4 & 50.8 & 14.1 & 52.2 & 41 & 4.8 & 2.6 & 3.6 & 3 \\
5 & 27.8 & 11.8 & 25.9 & 12 & 2.0 & 1.8 & 2.7 & 4 \\
\end{array}
\]

- scenario 1 utilizes mean values, geographically but not temporally segregated;
- scenario 2 utilizes mean values, geographically and temporally segregated;
- scenario 3 utilizes median values, geographically but not temporally segregated;
- scenario 4 utilizes median values, geographically and temporally segregated.

Beyond the calculation of weighted settlement sizes, these data must be processed further to account for temporal factors before estimating population values. Firstly, our macro-scale chronological phases are not of equal duration; utilizing the commonly-accepted assumption that settlements were inhabited for roughly 50 years, the number of settlements must be divided by the number of settlement generations. Secondly, the number of dwellings per hectare of settlement and the coefficient of synchronously-functioning houses must be determined. For this, the average value of 9.66 buildings per hectare from the SBDI data set is used, as well as Diachenko’s observation that, according to studies of settlement microchronology, only 78.4% of structures at the Tripolye CI giant-settlement of Maidanetskoe are synchronous. Finally, the received value for the number of synchronous structures should be multiplied by estimates for household composition – four to seven individuals; middle value: 5.5. All of these considerations may be expressed in the formula:

\[
p = \left(\frac{\sum_{i=1}^{n} a_i}{t} \right) bsd
\]
and MD04-2788/2760 XRF Ca intensity. In most cases these were high-resolution data sets that conformed easily to our measurement interval, but in some cases linear interpolation or slight temporal adjustments (+/- 5 years) were required. An explanation of each of these climatic proxies is presented in Table 3.

Results and Discussion

Demographic Calculations

The manner in which the area of settled territory should be calculated within the model environment quickly became a concern, as density calculations are contingent on a fixed search radius. In the end I utilized an adaptation of Hassan’s methodology, wherein an arbitrarily-defined zone of resource extraction (defined here as 10 km) is applied to each settlement and its population distributed over this area. This distance contour reflects the author’s previous modeling in the area of Cucuteni-Tripolye paleoeconomy, which suggested that resource extraction at the largest settlements would have likely extended beyond the normative five-kilometer exploitation assumption for sedentary societies. Still, functionally speaking, the resource extraction area will be far less for most settlements in

<table>
<thead>
<tr>
<th>Dataset name</th>
<th>Abbreviation</th>
<th>Measured phenomenon</th>
<th>Proxy for:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holocene Non-Sea-Salt K+ ion series from GISP2 with 200-year moving Gaussian filter</td>
<td>GISP2 NSS K+</td>
<td>Non-seat-salt K+ ion deposition in GISP2 ice core, Greenland</td>
<td>Strength of Siberian High pressure system</td>
</tr>
<tr>
<td>Holocene Sea-Salt Na+ ion series from GISP2 with 200-year moving Gaussian filter</td>
<td>GISP2 SS Na+</td>
<td>Sea-salt Na+ ion deposition in GISP2 ice core, Greenland</td>
<td>Strength of Icelandic Low pressure system</td>
</tr>
<tr>
<td>North Atlantic Holocene Drift Ice Proxy (Stack of MC52-V29191+MC21-GGC22)</td>
<td>Bond events</td>
<td>Percentage of ice-rafted debris in North Atlantic sediment cores</td>
<td>North Atlantic sea ice formation; Northern Hemisphere temperature</td>
</tr>
<tr>
<td>Global Sea Levels</td>
<td>GSL</td>
<td>Generalized observations of paleo-shorelines</td>
<td>Global sea level trends</td>
</tr>
<tr>
<td>SL21 S. elongatus (%)</td>
<td>SL21</td>
<td>Change in the prevalence of a cold-water species of dinoflagellate in the SL21 core, Aegean Sea</td>
<td>Aegean Sea surface temperature</td>
</tr>
<tr>
<td>LC21 Aegean warm-water foraminifera species (%)</td>
<td>LC21</td>
<td>Ratio of warm-water to cold-water forams in the LC21 core, Aegean Sea</td>
<td>Aegean Sea surface temperature</td>
</tr>
<tr>
<td>MD04-2788/2760 Black Sea XRF Ca intensity (total counts/1000)</td>
<td>BS XRF Ca</td>
<td>Variable rate of calcium deposition in a Black Sea sediment core</td>
<td>Sakarya River outflow strength; precipitation in NW Anatolia</td>
</tr>
</tbody>
</table>

Table 3: Explanation of climate proxy data relevant to RCC.
Table 4: Comparison of model output for population \((p)\), settled territory \((a_t)\), and population density \((y)\). “Corrected” data is normalized according to the coefficient of disparity between modeled and empirical SBDI settlement observations.

<table>
<thead>
<tr>
<th>Data</th>
<th>Model phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Region(s) / Variables</td>
<td>(1)</td>
</tr>
<tr>
<td>SBDI</td>
<td>(p)</td>
</tr>
<tr>
<td>(a_t) (modeled)</td>
<td>1,011</td>
</tr>
<tr>
<td>(y) (modeled)</td>
<td>0.104</td>
</tr>
<tr>
<td>(a_t) (corrected)</td>
<td>227</td>
</tr>
<tr>
<td>(y) (corrected)</td>
<td>0.463</td>
</tr>
<tr>
<td>All others</td>
<td>(p)</td>
</tr>
<tr>
<td>(a_t) (modeled)</td>
<td>29,736</td>
</tr>
<tr>
<td>(y) (modeled)</td>
<td>0.140</td>
</tr>
<tr>
<td>(a_t) (corrected)</td>
<td>6,676</td>
</tr>
<tr>
<td>(y) (corrected)</td>
<td>0.623</td>
</tr>
<tr>
<td>Combined</td>
<td>(p)</td>
</tr>
<tr>
<td>(a_t) (modeled)</td>
<td>30,747</td>
</tr>
<tr>
<td>(y) (modeled)</td>
<td>0.139</td>
</tr>
<tr>
<td>(a_t) (corrected)</td>
<td>6,903</td>
</tr>
<tr>
<td>(y) (corrected)</td>
<td>0.620</td>
</tr>
</tbody>
</table>

Table 5: Territory, population, and density estimates for each settlement phase of the SBDI during the Vladimirovskaya-Nebelovskaya-Tomashovskaya giant-settlement period, c. 4150-3700 B.C.E.

<table>
<thead>
<tr>
<th>Temporal reference (local settlement phases)</th>
<th>Major settlements</th>
<th>(a_t)</th>
<th>(p)</th>
<th>(y)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase</td>
<td>Range (B.C.E.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>c. 4150-4100</td>
<td>Fedorovka</td>
<td>314</td>
<td>5,873</td>
</tr>
<tr>
<td>2</td>
<td>c. 4100-4050</td>
<td>Vladimirovka</td>
<td>628</td>
<td>3,380</td>
</tr>
<tr>
<td>3</td>
<td>c. 4050-4000</td>
<td>Nebelovka, Val'yava</td>
<td>2,422</td>
<td>17,662</td>
</tr>
<tr>
<td>4</td>
<td>c. 4000-3950</td>
<td>Glubochek, Khristinovka 1</td>
<td>2,745</td>
<td>15,362</td>
</tr>
<tr>
<td>5</td>
<td>c. 3950-3900</td>
<td>Shushkovka</td>
<td>2,333</td>
<td>11,354</td>
</tr>
<tr>
<td>6</td>
<td>c. 3900-3850</td>
<td>Chichirkozovka, Dobrovody</td>
<td>1,341</td>
<td>16,873</td>
</tr>
<tr>
<td>7</td>
<td>c. 3850-3800</td>
<td>Tal'yanki, Vasil'kov</td>
<td>942</td>
<td>14,776</td>
</tr>
<tr>
<td>8</td>
<td>c. 3800-3750</td>
<td>Maidanetskoe</td>
<td>789</td>
<td>9,521</td>
</tr>
<tr>
<td>9</td>
<td>c. 3750-3700</td>
<td>Tomashovka</td>
<td>1,591</td>
<td>6,710</td>
</tr>
</tbody>
</table>

"Mean" scenario | 1,456 | 11,279 | 7.75

Table 5: Territory, population, and density estimates for each settlement phase of the SBDI during the Vladimirovskaya-Nebelovskaya-Tomashovskaya giant-settlement period, c. 4150-3700 B.C.E.
Comparison of modeled territory and density estimates with the empirical SBDI data showcases another obstacle of inferring a picture of population at a given time reference using temporally-indistinct data – territorial estimates far outweigh the population estimates, thus giving very low population densities in comparison to ethnographic observations of sedentary agriculturalists. The close agreement between modeled and empirical population values for the SBDI lent some confidence to the model findings, and led to the calculation of a normalizing coefficient (0.2245) to correct for modeled densities. Tables 4 and 5 summarize findings related to the modeled and empirical data sets, respectively. These data are displayed graphically in Figure 4.

Plausible Peak Population Values

According to the final, compensated values, during its time of peak population (Cucuteni B / Tripolye CI period, c. 3750 B.C.E.) the Cucuteni-Tripolye complex as a whole was composed of 27,000 people inhabiting roughly 15,000 km², for an average density of 1.8 persons per km². The SBDI, while accounting for only 10% of total inhabited territory, was home to 43% of the population and boasted an average density of 7.8 persons per km² (see Fig. 5 for a visualization of these data).

Compared to the estimates of Kruts, these values are incredibly low. For the same period, Kruts estimates a total population of 330,000 over an area of 110,000 km², for a density of 3 persons per km². This is reduced from a peak of 410,000 during the middle Tripolye (BII) period, which is not present in the present model (it instead shows a plateau
between both periods). Interestingly, despite large numerical differences, Kruts comes to a similar distribution of population, with ~39\% (130,000) residing within the SBDI. While the model results here are affected by the sample size (in the case of the SBDI data, roughly 60\% of known regional sites), compensating for this still does not approach the values proposed by Kruts. With liberal allowances for data limitation, a peak population of 50,000 individuals seems an upper limit.

To argue my case from the perspective of global population trends, let us examine the estimates of C. McEvedy and R. Jones,\(^5\) as well as the growth rates calculated by M. Kremer based on these same data.\(^\text{54}\) The values are: 7,000,000 for world population in 4000 B.C.E., 14,000,000 for 3000 B.C.E., and an annual growth rate of 0.000693. The overall trend of this model of global population growth is roughly hyperbolic until 1970 C.E., but the growth rates between each model state are abstracted to assume exponential growth. This allows for the interpolation of a value for 3750 B.C.E., given the formula for exponential growth:

\[
x_t = x_0 (1 + r)^t
\]

where \(x_t\) is population at time \(t\), \(x_0\) is the starting value and \(r\) is the rate of growth, this generates an estimate of 8,325,000 in 3750 B.C.E. Since the Earth’s land surface is approximately 1.4894 \(\times 10^8\) km\(^2\), some simple arithmetic tells us that Kruts’s scenario would place 4\% of the world’s population over an area of roughly seven ten-thousandths of its land surface. By contrast, our values account for 0.3\% of the world’s

Figure 5: Modeled Cucuteni-Tripolye population densities during the middle of Cucuteni B/Tripolye CI (c. 3750 B.C.E.).
Figure 6: Trends in metrics of SBDI settlement development displayed alongside a variety of paleoclimate proxies. The chief indicator of RCC in the context of this study is the GISP2 K+ data, which measures the strength of the Siberian High pressure system.
population over the same area, of which only one-seventh is actively exploited at this time.

The divergence in values here is due to Kruts’s methodology for extrapolating population based on land area. While the settlement data show extensive “no man’s land” between local settlement groups, Kruts determines local densities and uniformly extrapolates for entire regions. This leads to inflated values which do not accurately reflect observed settlement patterns. It should also be noted that Kruts’s model has a different temporal resolution, and utilizes an older scheme of relative dating without reference to calibrated absolute chronology. Contextualized against the total world population, it is asserted that a peak population value of ~30,000-50,000 for the entire Cucuteni-Tripolye complex c. 3750 B.C.E. is a more plausible scenario.

Assessing Statistical Correlations

The core of the climate analysis lies in the calculation of statistical correlations between climate proxies and data from the model of SBDI settlement development (Fig. 6). The following correlation matrix (Table 6) therefore makes the distinction between correlations between like classes and correlations between unlike classes of data. We are chiefly concerned with the latter.

Aside from calculation of the correlation coefficient to determine the strength of a relationship and interpretation of the p-value to determine the significance of a relationship, results may be weighed on the basis of how many mutually-correlated variables exist within a class. For example, we can see that the measure of maximum settlement size (a_m) is well-correlated with nearly all of climatic measurements – RCC weather systems, North Atlantic ice rafting, Anatolian precipitation, and Aegean sea surface temperature. Taking this variable as a proxy for migratory strength, these correlations provide the strongest support for the idea that giant-settlement development was contingent on climatic variability.

Strong correlations also exist between settlement density (y_s) and the climate proxies. A negative correlation during periods of peak migration (as indicated by a_m) is to be expected, as population concentrates in solitary giant-settlements. The highly positive correlation seen here is likely due to the periodic emergence of agglomerated settlement systems among the settlements of the Tomashovskaya local group during periods of particularly poor climate. While small-scale migrations are occurring constantly, these organizations may be considered a largely non-migratory climate response. As an example, the second exaggerated peak in the trend line of settlement density corresponds with the development of a dendritic $K=2$ settlement system based around the giant-settlement of Maidanetskoe.55

Care must be taken to not ascribe too much confidence to some of the results of the correlation analysis. The variable of global sea level (GSL) was included largely as a control, since these data describe (at this time) simply a near-linear positive increase. The correlation coefficients for a_m and y_s versus GSL (0.468 and 0.484, respectively) should be taken as a baseline for interpreting the strength of correlations between these and other variables. Therefore it is more difficult to assess the meaning of received relationships between, for example, y_s and Bond Events.

Sea surface temperature data from Aegean cores LC21 and SL21 are also not considered important from the perspective of correlations. They instead are a verification tool for assumptions regarding GISP2 data. On a centennial time scale, high K+ and Na+ values are correlated with the “cold poles” variety of RCC, but it cannot be assumed that they are accurate predictors of this on a finer time scale. Taken together, they show that the GISP2 peaks relevant to this analysis are indeed periods of relative cold.

The XRF Ca intensity measurements from core MD04-2788/2760 are particularly interesting,
as they illustrate regional variation in weather responses to the RCC mechanism. In this case, since Ca intensity is correlated with the GISP K+ data, we may infer that it behaves similarly to modern weather patterns – in the winter, cold winds from the Siberian High blow southwest along the steppe corridor, at times forming a cyclonic system over the Black Sea that may spawn severe weather. The confluence of cold air and comparatively warm water prompts condensation and precipitation, which is primarily contained within the Black Sea basin. It should be stressed that, despite the proximity of these regions, comparatively wet conditions in northwestern Anatolia do not preclude (and may actually indicate) dry conditions in the forest-steppe of Ukraine.

Conclusion

The presented results add substance to the hypothesis that climate played a key role in influencing the Western Tripolye migrations. While the data show only two of five major migrations identified in the archaeological materials, they do not contraindicate the assessment that constant micro-waves of migration continually brought new population into the SBDI. The correlations between

Table 6: Correlation matrix of SBDI settlement data and climate modeling proxies.

<table>
<thead>
<tr>
<th></th>
<th>GISP2 K+ NSS</th>
<th>GISP2 Na+ SS</th>
<th>Bond events</th>
<th>G.s.l.</th>
<th>p</th>
<th>y_s</th>
<th>y_p</th>
<th>BS XRF Ca</th>
<th>SL21 SST</th>
<th>LC21</th>
<th>a_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>GISP2 Na+ SS</td>
<td>0.920</td>
<td>0.000</td>
<td>0.743</td>
<td>0.000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bond events</td>
<td>0.747</td>
<td>0.678</td>
<td>0.914</td>
<td>0.000</td>
<td>0.374</td>
<td>0.216</td>
<td>0.174</td>
<td>0.251</td>
<td></td>
<td>0.936</td>
<td></td>
</tr>
<tr>
<td>G.s.l.</td>
<td>0.747</td>
<td>0.678</td>
<td>0.914</td>
<td>0.000</td>
<td>0.374</td>
<td>0.216</td>
<td>0.174</td>
<td>0.251</td>
<td></td>
<td>0.936</td>
<td></td>
</tr>
<tr>
<td>p</td>
<td>0.747</td>
<td>0.678</td>
<td>0.914</td>
<td>0.000</td>
<td>0.374</td>
<td>0.216</td>
<td>0.174</td>
<td>0.251</td>
<td></td>
<td>0.936</td>
<td></td>
</tr>
<tr>
<td>y_s</td>
<td>0.747</td>
<td>0.678</td>
<td>0.914</td>
<td>0.000</td>
<td>0.374</td>
<td>0.216</td>
<td>0.174</td>
<td>0.251</td>
<td></td>
<td>0.936</td>
<td></td>
</tr>
<tr>
<td>y_p</td>
<td>0.747</td>
<td>0.678</td>
<td>0.914</td>
<td>0.000</td>
<td>0.374</td>
<td>0.216</td>
<td>0.174</td>
<td>0.251</td>
<td></td>
<td>0.936</td>
<td></td>
</tr>
<tr>
<td>BS XRF Ca</td>
<td>0.598</td>
<td>0.615</td>
<td>0.741</td>
<td>0.000</td>
<td>0.000</td>
<td>0.684</td>
<td>0.460</td>
<td>-0.025</td>
<td>0.875</td>
<td>0.433</td>
<td></td>
</tr>
<tr>
<td>SL21</td>
<td>0.747</td>
<td>0.777</td>
<td>0.988</td>
<td>0.000</td>
<td>0.000</td>
<td>0.939</td>
<td>0.269</td>
<td>0.345</td>
<td>0.399</td>
<td>0.786</td>
<td></td>
</tr>
<tr>
<td>LC21</td>
<td>0.080</td>
<td>0.225</td>
<td>0.216</td>
<td>0.000</td>
<td>0.000</td>
<td>0.087</td>
<td>-0.735</td>
<td>-0.089</td>
<td>-0.169</td>
<td>-0.172</td>
<td>0.161</td>
</tr>
<tr>
<td>a_t</td>
<td>-0.034</td>
<td>-0.209</td>
<td>-0.310</td>
<td>-0.009</td>
<td>0.641</td>
<td>0.149</td>
<td>-0.705</td>
<td>-0.036</td>
<td>-0.226</td>
<td>-0.774</td>
<td></td>
</tr>
<tr>
<td>a_m</td>
<td>0.669</td>
<td>0.833</td>
<td>0.671</td>
<td>0.002</td>
<td>0.000</td>
<td>0.791</td>
<td>0.000</td>
<td>0.000</td>
<td>0.671</td>
<td>0.335</td>
<td></td>
</tr>
</tbody>
</table>

Table 6: Correlation matrix of SBDI settlement data and climate modeling proxies. Dark grey – significant relationships between disparate classes of data; white – significant correlations between like classes of data; grey – uncorrelated data; black – correlation rejected due to poor data quality.
SBDI population observations and climatic proxy data gives us confidence enough to suggest a general relationship – that Manzura’s demographic “steppe valve,” at least during the interval of c. 4150-3700 B.C.E. in the Southern Bug-Dnieper region, was determined by trends in the super-regional climate. We focus on these climatic trends due to their influential position at the beginning of a postulated causal chain, which necessarily leads to social and political stresses that prompt migratory episodes. Unfortunately, however, these stresses are inferential and not measurable at this time. Perhaps the results presented here may guide speculation in this area.

Aside from proposed corrections to the population research of Kruts, the findings of this study compliment the extensive body of analytical research into the developmental processes of Cucuteni-Tripolye settlements, as exemplified by the recent modeling of Diachenko. As archaeologists work to assess and improve upon existing hypotheses of Cucuteni-Tripolye cultural development, we should seek to extend the high-quality analysis of the Southern Bug-Dnieper interfluve to other regions, while developing a coherent vision of populations at a variety of scales beyond individual regions and local groups. It is hoped that, despite its limitations, the analysis presented here constitutes a step in this direction.

Acknowledgements:
Collaborations crucial to this research were facilitated by a scholarship from the Institute for European and Mediterranean Archaeology (IEMA). My colleagues Aleksandr Diachenko (Institute of Archaeology, National Academy of Sciences of Ukraine) and Bernhard Weninger (University of Cologne) deserve the utmost thanks for their inspiration and assistance.

Endnotes:
1. Recent volumes include Korvin-Piotrovskiy et al. 2003; Ciuk 2008; Korvin-Piotrovskiy and Menotti 2008; Anthony and Chi 2010.
2. All dates rendered in “B.C.E.” notation are based on determinations of calibrated radiocarbon years.
8. Ryzhov 2007; et al.
11. Most recently, Diachenko and Menotti 2012.
13. Previously discussed by many climate authors; see Dolukhanov and Shilik 2007 for a recent example focusing on human responses.
18. Depending on whether one applies Neo-Malthusian (e.g. Zubrow 1975; Hassan 1981) or Boserupian theory of population dynamics in relation to economic “intensification” (e.g. Boserup 1981), or a compromise between the two (e.g. Wood 1998), carrying capacity values are open to debate, as are mechanisms of population regulation. However, few – if any – demographic specialists would accept a general assumption of unchecked growth in preindustrial societies.
24. For more general information on the properties of the RCC mechanism, see Mayewski et al. 2004 and Weninger et al. 2009.
30. Rassamakin and Menotti 2011, 650-651 (table 2).
31. This nomenclature for settlement phases is derived from Diachenko and Menotti 2012.
33. Diachenko 2010a, 20 (table 1); Diachenko 2012, 2812 (table 1).
The effect of climatic variability on population dynamics

Works Cited

The effect of climatic variability on population dynamics

Institute for European and Mediterranean Archaeology

